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Abstract

We formulate a decentralized, cooperative multi-agent bandit framework, studied in Chang
et al. (2022), applied to the stochastic partial-monitoring cascading bandit problem first
introduced in Kveton et al. (2015a). The reward in each round depends on the joint-ranking
"cascade" collectively taken by all learning agents. The objective is shared, but to make
the coordination problem more challenging, we contend with three variants of information
asymmetry: action asymmetry, where the overall joint-ranking is unobservable to all agents
but the feedback received is common; reward asymmetry, where the overall ranking is
observable, but feedback received by each agent is i.i.d.; and that with both action and
reward asymmetry. For the first setting, we propose mCascadeUCB, and for the second
setting, we propose mCascadeUCB-Intervals, with both algorithms achieving O(log T )
gap-dependent regret within their respective settings. For the last setting, we propose
mCascadeDSEE, which achieves close to O(log T ) gap-independent regret. We demonstrate
our algorithms with experimental results.
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1 Introduction

In applications from search engine optimization to network routing to user recommendation,
the cascade model is a prominent tool used to describe user behavior or instances of partial
feedback. In the early twenty-first century, user behavior research examined how charac-
teristics of implicit user feedback and engagement—click-through rate, dwell times, query
chains, etc.—could be modeled and employed in recommendation or web search algorithms
to improve performance by up to thirty-one percent relative to algorithms without this data
(Agichtein et al. (2006), Radlinski and Joachims (2005)). Craswell et al. (2008) introduced
the first notion of the cascade model that sought to account for user "position bias" in search
rankings.

In essence, the model assumes a user that examines from first to last an ordered ranking
or list of items. The user endows each item with an attraction probability, which is the
likelihood the user is "attracted" by the item. An important assumption is that the user will
continue to examine the list until they are attracted by an item or reach the end of the list.
Additionally, if an item has attracted the user (often interpreted as a "click"), the user stops
and does not examine the remaining items. Thus, this model incorporates position bias, in
that higher-ranked items are more likely to be observed or clicked by users.

Previous literature has extended this model to a reinforcement learning bandit problem.
Kveton et al. (2015a) presented the first extension of the cascade model to a stochastic
bandit setting. We rebuild the technical details in section 2.1, but primarily, they consider
a learning agent whose goal is to minimize regret by recommending the top K items while
receiving cascade "click" feedback. In particular, they develop the first algorithms for the
cascading setting, CascadeUCB1 and CascadeKL-UCB, and prove gap-dependent regret upper
bounds on the order of O(log T ). Many related works to the cascading setting have since
been studied, which we examine further in section 1.

In a different vein, the study of multi-agent multi-armed bandits (MAMAB) has progressed
in recent years, motivated by applications in areas such as cognitive radio networks (Boursier
and Perchet (2022)). In particular, one of the first frameworks for a decentralized, cooperative
multi-agent setting for general multi-armed bandits is presented in Chang et al. (2022) and
Chang and Lu (2023). They introduce the notion of all individual players’ actions comprising
a collective joint-action with its own distinct reward distribution. Thus, the common goal
for all players is to minimize collective regret by pulling the most optimal joint-arm.

Furthermore, because of multi-agent dynamics, Chang et al. (2022) also introduce forms
of information asymmetry between the players into their settings. First, that in which players
are unable to observe the actions taken by other players, but receive identical rewards from
the joint-action (action asymmetry); second, that in which players receive i.i.d. copies of the
reward, but they can observe each others’ actions (reward asymmetry); and finally, where
players cannot observe each other’s actions and receive i.i.d. copies of the reward (both
action and reward asymmetry).

Our contribution. We make four contributions. First, we formulate a novel extension of
the stochastic cascading bandit introduced in Kveton et al. (2015a) to a multi-agent setting,
equipped with joint-items and joint-rankings. Previous work in this intersection (Yang et al.
(2024)) has explored multi-agent systems with communication between players facilitated
by a central server, but in our paper, our environment is decentralized and we allow no
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explicit communication between players during play. The setting and problem setup are
expanded upon further in section 2. Second, we increase the challenge of player coordination
by considering three problems involving information asymmetries inspired by Chang et al.
(2022), proposing algorithms for each. They are as follows:

• Problem A: Action Asymmetry We propose an ordering on the joint-items that
allows the players to coordinate even without having to observe the actions of the other
players. See Algorithm 1, mCascadeUCB.

• Problem B: Reward Asymmetry We propose an interval-based approach that
allows players to successively eliminate suboptimal joint-items despite receiving different
rewards. See Algorithm 2, mCascadeUCB-Intervals.

• Problem C: Action and Reward Asymmetry We propose a variant of the
explore-then-commit algorithm that achieves nearly optimal regret. See Algorithm 3,
mCascadeDSEE.

Further descriptions of the algorithms can be found in section 3. Third, we prove gap-
dependent regret upper bounds, notably for mCascadeUCB-Intervals in the reward-asymmetric
setting, on the order of O(log T ), and a gap-independent regret upper bound for mCascadeDSEE
in the action and reward-asymmetric setting that achieves close to log regret. The details
can be found in section 4. Finally, we showcase the performance of our algorithms with
several experiments, the results of which can be found in section 5.

Related Works. Various advancements to the canonical single-agent cascading bandit in
Kveton et al. (2015a) have been made. Thompson Sampling algorithms such as TS-Cascade
(Cheung et al. (2019), Zhong et al. (2021)) and variance-aware confidence sets derived from
Bernstein and Chernoff bounds match previous algorithms’ performance in the cascading
setting (Vial et al. (2022)). Zong et al. (2016) formulate a linear cascading bandit, proposing
algorithms that improve the regret dependence on the number of items, L, via the assumption
that item attraction probabilities can be approximated via an environment parameter vector.

Other popular cascading bandit variants are contextual cascading bandits (Li et al. (2016),
Wang (2021), Choi et al. (2024)), where information or context vectors on the items are
observed; best-arm/top K item identification (Zhong et al. (2020)); non-stationary settings
with abruptly changing attraction probabilities (Li and De Rijke (2019)); and even an
extension to a cascading Markov decision process, where transitions to more auspicious states
must be considered (Du et al. (2024)). As touched upon earlier, Yang et al. (2024) consider a
federated contextual cascading bandit, where each user is individually served by an agent, in
contrast to our setting where agents’ actions comprise a joint-ranking for the user(s). Agent
communication is also facilitated through a central server, while our decentralized setting
features no communication during play and various information asymmetries, giving rise to
a distinctly complex cooperation problem.

Modifications to the cascade model have been implemented into bandits as well. One
is user and topic clustering, with frameworks featuring item "topics" and user "interests"
with correlated attraction probabilities (Combes et al. (2015)) or even an underlying cluster
graph where an edge denotes user similarity which can be learned while incurring O(

√
T )

regret with the CLUB-Cascade algorithm (Li and Zhang (2018)). Katariya et al. (2016)
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extend a similar "Dependent Click Model" (DCM) to a bandit setting, which adds an
aspect of "user satisfaction" that just a "click" might not imply. Mansoury et al. (2024)
implement "exposure bias"—where more "useful" recommendations are pushed down by those
consistently recommended—by discounting rewards to items clicked higher in the ranking.
An item’s attraction probability could depend on its variation from previous items’ topics,
adding "diversity" (Li et al. (2020), Becker et al. (2007)). Item "abandonment probabilities"
(Cao et al. (2019)) remove the assumption that users will always continue examining. For a
final exhibit, Wang et al. (2024) incorporate delayed click feedback.

On the other hand, our work intersects with the growing literature on the multi-agent
or cooperative bandits problem first introduced by Awerbuch and Kleinberg (2008). In this
setting, M players have a collective goal of determining the best action, and often, a graph
represents the communication framework between players. Subsequent algorithms, such as
ϵ-greedy variations (Szorenyi et al. (2013), Jin et al. (2023)), gossip UCB (Landgren et al.
(2016), Martínez-Rubio et al. (2019)), or leader-follower DPE1 (Wang et al. (2020)) have
been proposed. Other lines of multi-agent works involve players only observing the rewards of
players within a neighboring distance (Cesa-Bianchi et al. (2016)) or realizing heterogeneous
rewards while communicating information via a graph network (Xu and Klabjan (2024)).
Some multi-agent settings involve asynchronous actions, where only a subset of players are
active at any time (Bonnefoi et al. (2017), Cesa-Bianchi et al. (2020)), or voting systems
to select the best action in a shared network set (Shahrampour et al. (2017)). Dubey et al.
(2020) consider a group of communicating agents selecting actions from their individual
action sets, with the goal of minimizing total group regret.

The decentralized, limited communication, multi-agent setting introduced in Chang et al.
(2022) has been explored further as well, with cooperative multi-agent reinforcement learning
algorithms following (Kao (2022), Mao et al. (2021), Mao et al. (2022)) that do not require
communication among players or a central server during learning. Furthermore, information
asymmetric RL settings have been explored, such as the leader-follower games in Kao et al.
(2022) where only the follower observes the action of the leader while realizing the same
reward, or extensions of information asymmetry to multi-agent contextual bandits in Chang
and Lu (2024). To the best of our knowledge, information asymmetry in a multi-agent
cascading bandit setting has yet to be researched.

Various areas call for answers within the intersection of cascading models and multi-agent
reinforcement learning. The user-interaction and click framework (Craswell et al. (2008),
Kveton et al. (2015a)) we adopt in this paper translates to a multi-agent problem when we
consider complex, multi-faceted items or recommendations that involve the collaboration
of multiple parties (e.g. content, thumbnails, and titles for YouTube videos; scripts and
graphic design for advertisements, etc.). Another area that might find utility, particularly
from the information asymmetry we study, is network routing. Kveton et al. (2015b) take
this framework in single-agent cascading bandits, where the Bernoulli feedback is instead
interpreted as points in a chosen network route that are on or down. Multi-agent reinforcement
learning in particular has potential in multi-agent routing (Yamin and Permuter (2024), Zeng
et al. (2020), Mammeri (2019)). Physical or cost constraints may hinder communication or a
central server for networks, calling for no-communication solutions. Additionally, a network
path’s efficiency or latency is highly dependent on the (potentially-unobservable) actions
of other stations, and can vary from station to station, analogous to the joint-actions and
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information asymmetry we study. This leaves stations having to coordinate to maximize
overall network performance—a cooperative multi-agent problem.

2 Preliminaries and Problem Statements

2.1 Single-Agent Cascading Bandits

First, we set up the standard cascade model and its inspired bandit. For any round t up to
the horizon T , a learning agent plays a ranking or action A = (a1, . . . , aK) which consists of
an ordered list of K items chosen from the agent’s ground set of items with cardinality L. A
user then examines the ranking from the first to the last item. The model (or user) endows
each item e ∈ E with an attraction probability, w̄(e) ∈ [0, 1], which is the likelihood item e
"attracts" the user, and the user "clicks". This probability is assumed to be independent of
the other items.

As previously introduced, an important assumption of the cascade bandit is that once
the user has clicked one item ak ∈ A, the user stops and does not examine the remaining
items in A. In other words, items a1, . . . , ak−1 are considered to be unattractive to the user
for that At, while the attractiveness of items ak+1, . . . , aK are unobserved. The reward for
the agent takes on a value of 1 if the user clicked on any item in the agent’s ranking, and
0 if no items were clicked. Ultimately, for any ranking A, a user can make at most one
click and the agent’s goal is to maximize the likelihood the user clicks on an item, which
equates to choosing the A∗ ∈ ΠK(E) consisting of the K most attractive items such that
1−ΠK

i=1(1− w̄(ai)) is maximized.

2.2 Multi-Agent Extension of Cascading Bandits

Here we extend the single-agent cascading bandit problem and formulate the decentralized
multi-agent setting by introducing a new framework allowing for joint actions by multiple
agents.

Let M be the number of players and Ei denote the set of actions player i has access
to. At the start of every round, each player picks K actions from their own action set.
This results in a joint action or ranking taken by these players which we denote using a
tuple A = (a1, ..,aK) of K joint items. Each joint item a is some vector (a1, ..., aM ) where
ai ∈ Ei. 1 Additionally, we make the assumption that for all players i,

∣∣Ei
∣∣ = L. Thus, the

number of distinct joint items by M players is LM and the number of joint rankings with K

distinct items is (LM )!
(LM−K)!

. In standard no-communication multi-agent bandits, the players
are allowed to agree on a strategy prior to the learning process; however, once the learning
begins they cannot explicitly communicate. Therefore, we have the following modification
from the single-agent setting.

Remark 1 In the single agent setting, at every step, the player recommends K out of L
items for the user to click on. For the multiplayer setting, this process will occur via players
taking their own actions K times in an ordering of their choice. When the user clicks on a

1. To avoid notation confusion, for a given item, a subscript indicates the ranking position of that joint item
which is recommended, while a superscript indicates the player whom an item is from.
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joint-item the players will know the place number of the item, but not the joint item itself.
e.g. they will know it’s the 1st, 2nd, 3rd, etc. item that was recommended.

We let Ct ∈ {1, . . . ,K,∞} be this feedback, i.e. the item that was clicked by the user, where
Ct = ∞ is equivalent to no click occurring. This remark is necessary for the information
asymmetry in actions (see problem A below) to be meaningful.

A subtle point to mention is with how the bandit is structured, the multiplayer setting
now creates a nontrivial possibility of repeated items. Recall in the single-player setting,
an agent takes an action A ∈ ΠK(E), which eliminates the possibility of item repetition.
However, in the multiplayer setting, players can intend to play certain permutations of
joint-items, but because they only control their respective item, this can result in a joint-
ranking with joint-item repetition. While repetition ostensibly seems "legal" in the sense
of a cascade model, it clashes with the intuition of applications such as a recommendation
system. Fortunately, the setup in the following paragraph helps punish this repetition.

Let B(p) denote the Bernoulli distribution with parameter p. Our user assigns a Bernoulli
distribution to each of the LM joint items which remains fixed across time. For a joint item,
an outcome of 1 is interpreted as attractive (where the user will click on the item) and 0 as
unattractive (where the user will skip over that item). Define w̄(e) to be the true attraction
probability for joint item e. For each round t, let wt ∈ {0, 1}LM be drawn from the joint
distribution

∏
eB(w̄(e)), which encodes the attractiveness of all joint items for the user at

time t. In other words, if for some joint-item e, wt(e) = 1, then the user, given that they
observe item e, would be attracted by or click on item e at time t. Note that while w̄ stays
constant throughout all rounds, wt is instantiated for round t only.

Remark 2 The drawing of wt for each round t punishes any instance of repeated joint-
items, as the probability of the user being attracted to each of the repeated items is no longer
independent; a user will assign 1 or 0 equally to all instances of that item for the duration of
round t. Thus, in maximizing the probability a joint-ranking gets a click, it is in the players’
best interests to always have K distinct joint-items.

Avoiding this repetition is not easy, particularly in "collision-prone" multiplayer problems.
Ultimately, we seek to contend with emergent complexities of a multi-agent setting by
considering potential forms of information asymmetry present. The individual problems we
study are expanded upon in the following sections.

Problem A Asymmetry in Actions. In this setting, each player is unable to observe
the other players’ actions, but they observe the same reward. In other words, the overall
joint-ranking At is unobservable to all players, but the item weights drawn by the user wt

apply to all players.

Problem B Asymmetry in Rewards. In this setting, each player can observe the other
player’s actions, but they each obtain their own i.i.d. realization of the reward. They cannot
observe other player’s realizations.

Problem C Asymmetry in both Actions and Rewards. In this setting, each player is
unable to observe the other player’s actions, and they obtain their own i.i.d realization of
the reward.
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We define the reward function f for some player i on any round t as follows:

f(At,wt) = 1−
K∏
k=1

(1− wt(ak)) (1)

We evaluate a learning policy by all the players by its expected regret, defined as:

RT = E

[
T∑
t=1

f(A∗,wt)− f(At,wt)

]
(2)

where A∗ is an optimal joint-ranking consisting of the K items with the highest true attraction
probabilities.

Note that from Remark 1 for Problem A, the players all receive a reward of 1 if at least
one joint-item in At is attractive to the user at time t, as each player observes the same
ranking-position of the item clicked, Ct, because wt is shared. Also note that because of the
reward asymmetry in Problems B and C, each player receives their own reward, but since the
rewards are i.i.d., they will experience the same regret as regret is calculated in expectation.

3 Main Results and Algorithms

3.1 Problem A: Information Asymmetry in Actions

Recall in Problem A, players cannot observe the exact joint action taken. Incoordination
arises easily, as joint-items played can differ from those intended. Consider for a given
position, player 1 wants to play joint item (a, b) and player 2 wants to play (c, d). Since each
player only controls their respective item, the resulting joint item is (a, d). Not only could
this lead to repetition of joint-items, decreasing the likelihood of the ranking getting a click,
but if this joint-item is observed, both players would record the observation and feedback
for the wrong joint-item. Thus, players must somehow coordinate effectively and infer the
actions of all other players. To solve this challenge of information asymmetry in actions, we
introduce the mCascadeUCB algorithm. The psuedocode is in Algorithm 1. mCascadeUCB is a
multiplayer adaptation of CascadeUCB1 (Kveton et al., 2015).

Players first estimate the user’s attraction probabilities for each joint-item on each round
by calculating their upper-confidence bounds (UCB). As in CascadeUCB1, for each item e,
the UCB at time t is given by:

UCBt(e) =

{
∞ if nt−1(e) = 0

ŵnt−1(e)(e) + cnt−1(e) otherwise.
(3)

where ŵs(e) is the average of s observed weights of joint-item e, nt(e) is the number of
times that item e is observed after t rounds, and:

cs =

√
1.5 log T

s
(4)

is the radius of a confidence interval around ŵs(e) after t steps such that w̄(e) ∈
[ŵs(e)− cs, ŵs(e) + cs] holds with high probability.
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Each player then plays their own K items that correspond to the K joint-items with the
highest UCBs.2 Here arises two concerns: 1) what should a player do when two or more
joint-items’ UCBs are equal, and 2) whether UCB indices for items differ between players,
leading to players intending for different joint-actions. For 1), ties in the single-player UCB
algorithm were settled arbitrarily, however, this fails in the multiplayer setting. So to address
this issue, we define an order relation on E, which players can agree upon prior to learning
and follow throughout the game. We define the joint items order relation as follows:

Definition 3 Let M be the number of players and let a = (a1, . . . , aM ), b = (b1, . . . , bM ) be
two joint items in E. We say a < b if and only if there exists an n ∈ {1, 2, . . . ,M} such that
for all i < n, ai = bi and an < bn.

In mCascadeUCB-A, players then settle UCB ties between joint-items choosing the lesser
joint-items according to this relation. This ensures all players choose the same K items, at
least for the first round. This coordination will continue for all rounds, because for Problem
A, Ct is the same for all players. Thus, all players will update UCBs over E identically,
resolving 2), and ensuring for any round, all players can infer what joint-ranking will be
played.

We show that mCascadeUCB achieves a similar upper bound on the expected T -step regret
as the single-agent CascadeUCB1 algorithm. We first assume without loss of generality that the
joint-items in E are sorted by decreasing attraction probabilities so that A∗ = (1,2, . . . ,K) is
the optimal ranking, consisting of the K optimal joint-items. Thus, joint-items K+1, . . . ,LM ,
are called sub-optimal. The sub-optimality gap between an optimal item e∗ and a suboptimal
item e is defined to be the following:

∆e,e∗ := w̄(e∗)− w̄(e)

We make these assumptions again in later proofs of Problems B and C.

Theorem 4 If each player uses mCascadeUCB-A in the setting of Problem A, then the expected
T -step regret of mCascadeUCB-A is bounded as:

RT ≤
LM∑

e=K+1

12

∆e,K
log T +

π2

3
LM .

This upper bound is a direct corollary from Theorem 2 as proved in Kveton et al. (2015a).
As using mCascadeUCB-A essentially removes all action information asymmetry between the
players and the players’ UCB indices are identical throughout the play, Problem A becomes
analogous to a single player cascading bandit, with the main distinction being there are now
LM total joint-items and K optimal joint-items with the highest attraction probabilities
comprising the optimal ranking.

2. Note that the reward is the same for all permutations of a joint-ranking, but as shown in the psuedocode
for mCascadeUCB-A, we arrange these K items from lowest to highest UCB to increase the likelihood of
more items being observed. This often is seen as a shortcoming of the cascade model, as intuition would
want the most attractive item to the user ranked first.
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Algorithm 1: mCascadeUCB
1 Each player i has a ground set Ei consisting of L items. Denote e to be a joint item

and E = ΠM (Ei) to be the set of all joint items by M players. Players will agree to
an ordering of E held constant during the entire game.

2 ∀e ∈ E, initialize ŵ0(e) = 0 and n0(e) = 0.
3 for t = 1, . . . , T do
4 ∀e ∈ E, compute UCBt(e) (see 3).
5

6 // Joint ranking selection
7 Each player i considers the K joint items with the largest UCBs. If there exist

ties, preference goes to the lesser joint item(s) indicated by the order relation
specified in Definition 3. These K items are then sorted from lowest UCB to
highest UCB. Let a1, . . . ,aK be these K joint items after this selection and
sorting.

8 Each player i then selects their respective individual K items from Ei in the
order that makes up this order of K joint actions.

9 (a1, . . . ,aK) → At

10 Each player observes same click Ct ∈ {1, . . . ,K,∞}.
11

12 // All players update relevant statistics
13 ∀e ∈ E,nt(e) = nt−1(e)
14 forall k ∈ {1, 2, . . . , Ct} do
15 ak → e
16 nt(e) + 1 → nt(e)

17
ŵt−1(e)nt−1(e) + 1{k = Ct}

nt(e)
→ ŵt(e)

18 end
19 end

9
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3.2 Problem B: Information Asymmetry in Rewards

In Problem A, since all players observe the same reward outcome (i.e., the same click), they
maintain identical updates for each joint item’s empirical mean and confidence interval over
time. In other words, each player has the same ordering of the joint items at every step. A
fixed ordering relation of joint items, used only to break ties in UCB values, thus suffices to
ensure that all players choose the same top K items.

In Problem B, however, each player sees their own i.i.d. reward realization for any
recommended item and will consequently form different empirical means for the same joint
item. As a result, even for the same joint item, players will no longer share a common set of
UCB values. Applying mCascadeUCB could give rise to miscoordination — where one player
aims for one joint arm, but another player aims for another joint arm, thus resulting in taking
a completely different joint arm (see Figure 1 in Chang et al. (2022) for an illustration in the
standard MAB problem that using UCB indices alone results in linear regret for Problem B).

Thus for Problem B, we propose an intervals-based algorithm, mCascadeUCB-Intervals,
the psuedocode of which is in Algorithm 2. Recall that the familiar UCB index ensures the
true mean of an item lies below it with high probability, but by also subtracting the error
term, cnt−1(e), from the empirical mean, ŵnt−1(e)(e), we obtain the lower confidence bound
(LCB), which with high probability, lies below the true mean for a joint-item. Together, the
UCB interval contains the true attraction probability for a joint-item with high probability.

UCB intervals are powerful as if two intervals do not overlap (i.e. are disjoint), then
with high probability, we can say the item corresponding to the lower interval has a worse
click probability than the item corresponding to the higher interval. Also note that by the
error term cnt−1(e) calculation, these intervals will be monotonically shrinking as items get
observed repeatedly. Thus, in the case of cascading bandits specifically, where players need
to recommend the top K joint-items (out of LM ), players can instead work to eliminate
suboptimal items that are not in the top K, adopting a quasi-"innocent until proven guilty"
strategy.

Concretely, in mCascadeUCB-Intervals, each player keeps track of their own desired set,
initialized to contain all joint-items. Having agreed upon an ordering of the items before
play, the players then cycle through the items within their desired sets for each round,
i.e. A1 = (a1, · · · ,aK),a2 = (a2, · · · ,aK+1), · · · ,ALM = (aLM ,a1, · · · ), · · · . This idea of
disjoint confidence intervals is crucial, as at any time, if any player observes an item whose
UCB interval is disjoint and below K other items, once that joint-item is meant to be played
in any joint-ranking, they sabotage. Instead of following the agreed-upon order, they play a
different individual item, which leads to a different overall joint-item. As players can observe
each others’ actions, this signals (without explicit communication) for all players to remove
this item from their desired sets. Thus, using intervals is essential to avoid incoordination, as
players can reliably identify and agree upon the best K actions, even when their individual
reward observations differ.

We show that using mCascadeUCB-Intervals for Problem B achieves O(log T ) gap-
dependent regret.
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Algorithm 2: mCascadeUCB-Intervals
1 Players will agree to an ordering of E held constant during the entire game.
2 For each player i, initialize their desired set D = E, and ∀e ∈ E, initialize ŵ0(e) = 0

and n0(e) = 0.
3 for t = 1, . . . , T do
4 for each player i ∈ {1, . . . ,M} do
5 // Compute UCB and LCB
6 forall e ∈ D do
7 UCBt(e) = ŵnt−1(e) + ct−1,nt−1(e)

8 LCBt(e) = ŵnt−1(e) − ct−1,nt−1(e)

9 end
10 Consider the next recommendation A′

t inside D in accordance to the order
(see step 23)

11 // Update desired set
12 for each recommendation a′

k ∈ A′
t do

13 if Player i observes K other joint arms e ∈ D satisfying
UCBt(ak) < LCBt(e) then

14 Player i pulls the arm not equal to a′
k[i]

15 end
16 else
17 Player i pulls the arm equal to a′

k[i]
18 end
19 end
20 (a1, · · · ,aK) → At

21 for k = 1, ....,K do
22 Observe kth joint item of At. if ak ̸= a′

k then
23 remove a′

k from D. For future rounds, consider the arm after a′
k (not

ak), according to the ordering.
24 end
25 end
26 Each player observes their own click Ct ∈ {1, . . . ,K,∞}.
27 // Update relevant statistics
28 ∀e ∈ E,nt(e) = nt−1(e)
29 forall k ∈ {1, 2, . . . , Ct} do
30 ak → e
31 nt(e) + 1 → nt(e)

32
ŵt−1(e)nt−1(e) + 1{k = Ct}

nt(e)
→ ŵt(e)

33 end
34 end
35 end

11
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Theorem 5 If each player uses mCascadeUCB-Intervals in the setting of Problem B, then
the expected T -step regret of mCascadeUCB-Intervals is bounded as:

RT ≤
LM∑

e=K+1

12 + 48K + 48
√
K

∆e,K
log T +

(
π2

3
M + 2

)
LM .

The full proof is in Section 4. We first decompose the regret using the event where all
items’ true means lie within their intervals, the complement of which happens with low
probability. Under this event, we then bound the number of observations of suboptimal
items, however, using UCB intervals means resulting inequalities include error terms for both
the suboptimal item and an optimal item. This issue is alleviated by Lemma 8, which lower
bounds the number of observations for any optimal item for any round t > 2LM , limiting
the radius of its UCB interval.

3.3 Problem C

In Problem B, players can observe each other’s actions, so despite receiving i.i.d. rewards,
players can maintain the same desired set by following a fixed joint-item ordering relation
and eliminating joint-items when at least one player observes interval disjointness. However,
the algorithm mCascadeUCB-Intervals fails in Problem C because players can not observe
other players’ actions or rewards, making it impossible to coordinate in the same way.

Since each player must rely solely on their own i.i.d. observations in Problem C, we
propose the mCascadeDSEE algorithm, which follows a structured exploration and exploitation
schedule. The players decide on an ordering and choose a monotonic function K(λ). In the
λ-th exploration phase (starting from λ = 1), each joint-item e is ranked first K(λ) times,
to ensure feedback for all items in the cascading setting. Afterward, each player commits
to the top K items (arranged by the ordering) with the highest empirical means until the
next power of 2. The function K(λ) is chosen to tend to infinity so that more samples are
collected in later epochs as the exploitation phases grow exponentially in length.

Although players may initially converge to different M -tuple optimal joint-items due
to i.i.d. rewards, the probability of mistakes decreases rapidly as λ increases. Thus, with
high probability, each player eventually identifies and commits to the true top K joint-items,
forming the M -tuple optimal recommendation, A∗. Additionally, because new exploration
phases occur at powers of 2, the overall regret becomes upper bounded by O(K(T ) log(T )).
The rigorous justification for this procedure is provided in the proof of Theorem 6.

Theorem 6 If the players follow mCascadeDSEE in Algorithm 3 in the setting of Problem C,
then we have the following regret bound:

RT ≤ O(K(T ) log(T )) (5)

The full proof is in section 4.2. Notice the lack of dependence on the gap ∆e,K in
the above. This is because there is a constant

∑∞
t=1 t

−2K0(t)ϵ2 whose order depends on
ϵ < 1

2 mine,e∗ ∆e,e∗ = 1
2∆K+1,K .

12
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Algorithm 3: mCascadeDSEE
1 Players will agree to an ordering of E held constant during the entire game.
2 Pick a monotonic function K(λ) : N → N such that limt→∞K(λ) = ∞. First, let

λ = 1.
3 for each joint-item e ∈ E do
4 For K(λ) rounds, each player recommends their individual items that make up

the joint-action At starting with e followed by the next K − 1 joint-items after,
according to the ordering.

5 end
6 for each player i ∈ {1, . . . ,M} do
7 Player i calculates the empirical attraction probability for each joint-item e.
8 Player i selects the top K joint-items with the highest-attraction probabilities,

and in the event of a tie, selects arbitrarily. They arrange them into At by the
agreed upon order, and commits to their corresponding items up until the next
power of 2.

9 end
10 When t = 2n for some n ≥ ⌊log2(K(1)LM )⌋+ 1, go back to step (3) and start a new

exploration phase, incrementing λ by 1.

4 Regret Analysis

4.1 Problem B

Here we prepare the proof of the upper bound in Theorem 5. We first cite some important
auxiliary definitions and results from previous literature, particularly Kveton et al. (2015a),
attempting to parallel notation when possible.

• For any joint ranking At, define the permutation of optimal joint-items, πt as such: for
k = 1, · · · ,K, if the k-th joint item in At is optimal, set πt(k) = at

k. The remaining
joint items in At are positioned arbitrarily.

• For any optimal joint-item e∗ and sub-optimal joint-item e, let Ge,e∗,t be the event e
is chosen instead of item e∗ at time t, and that e is observed. That is:

Ge,e∗,t = {∃1 ≤ k ≤ K s.t. at
k = e,πt(k) = e∗, and wt(a

t
1), · · · ,wt(a

t
k−1) = 0}

These definitions set up the use of Theorem 1 from Kveton et al. (2015a), which allows
us to decompose the expected regret on round t by looking at the sub-optimality gaps and
the G event for all suboptimal items.

Lemma 7 (Theorem 1, Kveton et al. (2015a), adapted for joint-items and joint-rankings)

Et [R(At,wt)] ≤
L∑

e=K+1

K∑
e∗=1

∆e,e∗Et [1{Ge,e∗,t}]

We now prove Theorem 5.

13
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Proof (Theorem 5) Define E i
t = {∃e ∈ E s.t. |w̄(e)− ŵni

t−1(e)
(e)| ≥ cni

t−1(e)
}. Thus,

⋃
i E i

t

is the event that for some player i, there exists some joint-item e where the w̄(e) is not
within the player i’s UCB interval around ŵni

t−1(e)
(e). Let

⋂
i Ē i

t be the complement; that is,
for all players and for all joint items e, w̄(e) lies within each player’s respective UCB interval
for e. Decompose the regret of mCascadeUCB-Intervals as

RT = E

[
T∑
t=1

I

{⋃
i

E i
t

}
R(At,wt)

]
+ E

[
T∑
t=1

I

{⋂
i

Ē i
t

}
R(At,wt)

]
(6)

where R(At,wt) is the regret incurred on time t.
For the first term of 6, note:

E

[
T∑
t=1

I{
⋃
i

E i
t}R(At,wt)

]
≤ E

[
T∑
t=1

I

{⋃
i

E i
t

}]
≤

M∑
i=1

E

[
T∑
t=1

I
{
E i
t

}]
≤ π2

3
MLM

where the third inequality follows from 1) Theorem 2 from Kveton et al. (2015a) which
uses the fact that our UCB intervals across all LM joint-items were constructed to hold with
high probability (Hoeffding’s Inequality) and 2) the aforementioned upper bound holds for
each player.

Next, we bound the number of observations of a suboptimal joint-item e under the
good event

⋂
i Ēt by any player. Since the players’ clicks/observations are i.i.d. and regret

is calculated in expectation, consider the regret incurred by an arbitrary player i and let
ni
t−1(e) denote the number of observations for item e for player i up to time t. We first

decompose the second term of 6 into the first 2LM rounds, where R(At,wt) ≤ 1, and the
remaining T − 2LM rounds. Invoking Lemma 7 for the latter, the second term of 6 is thus
upper bounded as:

E

[
T∑
t=1

I

{⋂
i

Ēt

}
R(At,wt)

]
≤

LM∑
e=K+1

E

 K∑
e∗=1

T∑
t=2LM+1

∆e,e∗I

{⋂
i

Ēt, Ge,e∗,t

}+2LM (7)

where Ge,e∗,t is now the event that e is chosen instead of e∗ at time t, and that e is
observed for player i. Select any optimal joint-item e∗. For any time t > 2LM , under Ge,e∗,t,
this implies e and e∗’s UCB intervals are not disjoint for all players (otherwise e would’ve
been eliminated), which means ŵni

t−1(e)
(e)+cni

t−1(e)
≥ ŵni

t−1(e
∗)(e

∗)−cni
t−1(e

∗). Additionally,
under

⋂
i Ēt, we know the true attraction probabilities lie within each player’s respective

UCB intervals, i.e. |w̄(e) − ŵni
t−1(e)

(e)| < cni
t−1(e)

and |w̄(e∗) − ŵni
t−1(e

∗)(e
∗)| < cni

t−1(e
∗).

With these facts together, it holds that:

w̄(e) + 2cni
t−1(e)

≥ w̄(e∗)− 2cni
t−1(e

∗)
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which implies:

∆e,e∗ ≤ 2(cni
t−1(e)

+ cni
t−1(e

∗))

≤ 2

(√
1.5 log T

ni
t−1(e)

+

√
1.5 log T

ni
t−1(e

∗)

)
(By definition of c)

By Lemma 8, for any t > 2LM , we have ni
t−1(e

∗) ≥ ni
t−1(e)

4K . Thus,

∆e,e∗ ≤ 2

(√
1.5 log T

ni
t−1(e)

+

√
6K log T

ni
t−1(e)

)
(by Lemma 8)

=⇒ ni
t−1(e) ≤

(6 + 24K + 24
√
K) log T

∆2
e,e∗

Let τe,e∗ = (6+24K+24
√
K) log T

∆2
e,e∗

. Therefore,

K∑
e∗=1

T∑
t=2LM+1

∆e,e∗I

{⋂
i

Ēt, Ge,e∗,t

}
≤

K∑
e∗=1

∆e,e∗

T∑
t=2LM+1

I

{⋂
i

{ni
t−1(e) ≤ τe,e∗}, Ge,e∗,t

}
.

(8)
Let:

Me,e∗ =
T∑

t=2LM+1

I{
⋂
i

{ni
t−1(e) ≤ τe,e∗}, Ge,e∗,t}

be the inner sum in 8. Now note that 1) across all players i, the number of observations
ni
t−1(e) of item e increases by one when the event Ge,e∗,t happens for that player for any

optimal item e∗, 2) for any given player, the event Ge,e∗,t happens for at most one optimal
e∗ at any time t, and 3) τe,1 ≤ · · · ≤ τe,K .

From these facts, we can bound the number of times the indicator event is true over
t = 2LM , · · · , T as Me,e∗ ≤ τe,e∗ , and moreover,

∑K
e∗=1 Me,e∗ ≤ τe,K . Thus, the right-hand

side of 8 is bounded above by:

max

{
K∑

e∗=1

∆e,e∗me,e∗ : 0 ≤ me,e∗ ≤ τe,e∗ ,

K∑
e∗=1

me,e∗ ≤ τe,K

}
.

Since the gaps are decreasing, ∆e,1 ≥ · · · ≥ ∆e,K , we maximize the quantity above by making
me,e∗ the largest possible for lower-numbered optimal joint-items, i.e. m∗

e,1 = τe,1,m
∗
e,2 =

τe,2 − τe,1, . . . ,m
∗
e,K = τe,K − τe,K−1 (where the first constraint is satisfied by fact 3).

Substituting in for τe,e∗ , we see 8 is bounded above by:[
∆e,1

1

∆2
e,1

+

K∑
e∗=2

∆e,e∗

(
1

∆2
e,e∗

− 1

∆2
e,e∗−1

)]
(6 + 24K + 24

√
K) log T. (9)
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By Lemma 3 of Kveton et al. (2014), the term inside the square brackets of 9 is bounded
above by 2

∆e,K
. Thus, summing over all suboptimal joint-items e, we get that the first term

of the right-hand side of 7 is bounded above as:

LM∑
e=K+1

12 + 48K + 48
√
K

∆e,K
log T

Chaining all inequalities finishes the proof.

Lemma 8 Suppose the players are following mCascadeUCB-Intervals. Let e be any sub-
optimal item and e∗ be any optimal item in a ground set E with cardinality L. Then for
any t > 2LM , if

⋂
i Ēt happens, the number of observations by player i of optimal item e∗ is

lower bounded as:
ni
t−1(e

∗) ≥ 1

4K
ni
t−1(e)

Proof As we are in
⋂

i Ēt, we can consider the case where both e∗ and e are both still
within the desired set at time t; the case when e has been eliminated follows as a result
because e no longer will be observed and thus the lower bound is unchanging. Without loss
of generality, assume the size of the desired set at time t is LM . Partition the t rounds into
groups of size LM , namely:

{1, ..., t} = {1, ..., LM} ∪ {LM + 1, ..., 2LM} ∪ · · · ∪ {⌊ t

LM
⌋LM + 1, ..., t}.

In the event the desired set is smaller than LM , simply partition the t rounds by each loop
over the current desired set. Since by mCascadeUCB-Intervals, the arms are recommended
cyclically, in each group of rounds (e.g. {nLM + 1, ..., (n+ 1)LM}), for exactly one round,
e∗ must be the first joint-item to be recommended and therefore will be observed by all the
users for that round. Therefore, nt−1(e) ≥ 1 (which is true for t > LM ),

ni
t−1(e

∗) ≥ ⌊ t

LM
⌋ ≥ t

2LM

where the last inequality holds as t
LM ≥ 2. Furthermore, by mCascadeUCB-Intervals, e

is recommended (and therefore observed) at most K times over every round. Therefore, we
have whenever nt−1(e) ≥ 1 (again true for t > LM ),

ni
t−1(e) ≤ K⌈ t

LM
⌉ ≤ 2K

t

LM

where the last inequality holds as t
LM ≥ 1. Combining both inequalities above, we have,

ni
t−1(e

∗) ≥ 1

4K
ni
t−1(e).
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4.2 Problem C

In this section, we provide the proof of Theorem 6. It follows many of the same ideas in
Chang et al. (2022).

Proof (Theorem 6) Decompose the total regret RT = RT,E +RT,C , where RT,E is the regret
incurred during the exploration sequence spaced at powers of 2, while RT,C is the regret
incurred during the commitment phase when committing to the ranking of the top K items
with the highest estimated means.

During the λ-th exploration phase, each joint-item e is ranked first K(λ) times. Let νt(e)
denote the total number of times joint-item e is ranked first during exploration up to time
t. The number of exploration phases is approximately log2(T ), since exploration occurs at
intervals based on powers of 2. It follows that νt(e) ≤ K(⌊log2(t)⌋)⌈log2(t)⌉.

As Rt(At,wt) ≤ 1, regret incurred during exploration is thus bounded by the total
number of exploration rounds, i.e.:

RT,E ≤
∑
e∈E

νt(e) ≤ LM ·K(⌊log2(T )⌋) · ⌈log2(T )⌉.

Next, we show RT,C is bounded by a constant less than ∞. Let ϵ < 1
2∆K+1,K , where K is

the optimal item with the lowest true attraction probability and K+1 is the suboptimal item
with the highest true attraction probability (thus, ∆K+1,K is the minimum sub-optimality
gap). Consider the good event Gi

t(e) where for player i at time t, the empirical probability
for item e (ŵni

t−1(e)
(e)) is within ϵ of the true probability for item e (w̄(e)), i.e.:

Gi
t(e) = {|ŵni

t−1
(e)− w̄(e)| < ϵ}

It follows that when Gt =
⋂

e,iG
i
t(e) all players collectively choose A∗ = (1, . . . ,K) and no

regret is incurred. Using the law of total expectation, our commit-phase regret can thus be
bounded as:
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RT,C =
∑
t∈C

E[Rt | Gt]P (Gt) + E[Rt | Gc
t ]P (Gc

t)

≤
T∑
t=1

P (Gc
t) (since E[Rt | Gc

t ] ≤ 1 and E[Rt | Gt] = 0)

≤
T∑
t=1

M∑
i=1

∑
e∈E

P
(
Gi

t(e)
c
)

(applying De Morgan’s Law and union bound)

= M
T∑
t=1

∑
e∈E

P
(∣∣ŵnt−1(e)(e)− w̄(e)

∣∣ ≥ ϵ
)

(by i.i.d. rewards)

≤ 2M
T∑
t=1

∑
e∈E

exp
(
−2nt−1(e)ϵ

2
)

(by Hoeffding’s inequality)

≤ 2M

T∑
t=1

∑
e∈E

exp
(
−2K0(t) log2(t)ϵ

2
)

(using nt−1(e) ≥ K0(t) log2(t))

≤ 2MLM
T∑
t=1

t−2K0(t)ϵ2

≤ 2MLM
∞∑
t=1

t−2K0(t)ϵ2

where nt−1(e) ≥ K0(t) log2(t) follows from Claim 2, Theorem 5 in Chang et al. (2022)).
The function f(t) = t−2K0(t)ϵ2 is monotonically decreasing for t ≥ 1 since K0(t) is a non-
decreasing function that tends to infinity as t → ∞. Thus, the sum

∑∞
t=1 t

−2K0(t)ϵ2 can be
bounded by:

∞∑
t=1

t−2K0(t)ϵ2 ≤ 1 +

∫ ∞

1
t−2K0(t)ϵ2 dt

Since K0(t) tends to infinity, there exists an integer N such that for all t > N , 2K0(t)ϵ
2 ≥ 3

so that t−2K0(t)ϵ2 ≤ t−3. As γ > 1 ensures that the integral
∫∞
1 t−γ dt converges, it follows

that
∫∞
N t−2K0(t)ϵ2dt < ∞. Therefore, RT,C is bounded by a constant, leading to the total

regret bound:
RT ≤ O(K(T ) log(T )).

5 Experiments

In this section, we demonstrate the effectiveness of our algorithms with experiments. We run
our experiments with L = 5 individual arms per players, K = 10 recommended positions,
and M = 4 players. Note that this gives rise to 54 = 625 total joint actions. We run for
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Figure 1: Experiments with L = 5 individual arms per players, K = 10 recommended
positions, and M = 4 players. Our regret bounds are in 1. We run for T = 100, 000
rounds and average the regret across 10 rounds. The black curve represents
mCascadeUCB for Problem A (information asymmetry in actions) and is the bench-
mark. The green curve represents mCascade-Intervals for Problem B (informa-
tion asymmetry in rewards). The blue curve represents mCascadeDSEE for problem
C (information asymmetry in both).

T = 100, 000 rounds and average the regret across 10 rounds. Our regret bounds are in
Figure 1.

The black curve represents mCascadeUCB for Problem A (information asymmetry in
actions) and is the benchmark. Note in this plot that the algorithm for Problem A has the
same regret bound as Kveton et al. (2015a) which will essentially serve as our benchmark for
our algorithms.

The green curve represents mCascade-Intervals for Problem B (information asymmetry
in rewards). Notice that for this problem the regret curve is eventually flat. This is because
all the suboptimal joint items eventually get eliminated, and thus the players only pull
recommend the top K items (this algorithm is useful for best arm identification as well in
practice). The reason this performs worse than problem C despite having a stronger regret
bond is because of the time it takes to remove an arm from the desired set. This can be sped
up by decreasing the length of the interval by a constant factor.

The blue curve represents mCascadeDSEE for problem C (information asymmetry in both).
Note that for this algorithm, initially the regret is linear since the players do not have enough
samples to commit to the best top K items. Eventually, the graph looks like a "staircase".
This is because in the exploration phases, the regret is linear and thus the plot is steep in
those areas. In the committing phases, the plot is flat because the players are committing to
the best actions. Furthermore, the flat parts are growing because the exploration phases are
occurring at powers of 2.
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6 Conclusion

In this paper, we presented a novel multi-agent extension of cascading bandits, featuring
joint items and rankings requiring coordination between decentralized players. We pre-
sented algorithms for handling three variants of information asymmetry in the cascading
setting, proved upper regret bounds, and demonstrated their performance with exper-
iments: mCascadeUCB achieves O(log T ) gap-dependent regret in the action-asymmetric
setting, mCascadeUCB-Intervals achieves the same in the reward-asymmetric setting, and
mCascadeDSEE achieves nearly log regret in the action and reward-asymmetric setting.
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